By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
Modern Health CareModern Health Care
Notification Show More
Latest News
No 'cookie-cutter' wellness apps: Why Providence, Prime Healthcare and Memorial Hermann built their own
March 21, 2023
Viewpoint: 3 ways to improve the nurse-physician relationship
March 21, 2023
Florida proposal would stiffen charges for assault of hospital employees
March 21, 2023
FDA to end some COVID-19 policies, revise others for long-term guidance
March 21, 2023
MaineHealth using AI to record patient conversations
March 21, 2023
Aa
  • Home
  • News
  • Physicians
  • Telehealth
  • Hospitals
  • Opioids
  • Opinion
  • Acquisitions
  • Fraud
  • Legislation
  • Home Health
Reading: Facial Pain Comes to Light
Share
Aa
Modern Health CareModern Health Care
  • Home
  • News
  • Physicians
  • Telehealth
  • Hospitals
  • Opioids
  • Opinion
  • Acquisitions
  • Fraud
  • Legislation
  • Home Health
Search
  • Home
  • News
  • Physicians
  • Telehealth
  • Hospitals
  • Opioids
  • Opinion
  • Acquisitions
  • Fraud
  • Legislation
  • Home Health
Have an existing account? Sign In
News

Facial Pain Comes to Light

Epoch Times
Epoch Times September 24, 2022
Updated 2022/09/24 at 4:30 PM
Share
SHARE

In Brief:

  • Using an imaging technique to visualize pain signals in facial nerves, NIDCR researchers identified a protein that enhances neurons’ responses to painful stimuli.
  • Blocking the protein in mice blunted pain signaling; the results could inform the development of safer, non-opioid pain therapies.

From a throbbing tooth or aching jaw to a pounding migraine, pain in the oral and facial region—known as orofacial pain—afflicts 5 to 12 percent of the population. Such pain can hinder daily activities like eating, tooth-brushing, and mask-wearing, yet opioid-based pain relievers carry the risk of misuse. Understanding how facial nerves process pain signals could help scientists find safer and more effective pain interventions.

NIDCR researchers recently caught facial nerves on camera responding in real-time to pain signals. Their work uncovered a key role for a protein called cyclin-dependent kinase 5 (Cdk5) in pain signaling. The collaboration between scientists in the labs of Ashok Kulkarni, PhD, and Ken Yamada, MD, PhD, showed that blocking Cdk5 blunted the activity of pain-sensing neurons. Kulkarni and Yamada credited their co-mentee, first author, and NIDCR research fellow Minghan Hu, PhD, for bridging the two labs’ distinct expertise for the study. The findings could provide insight into ways to develop safer, non-opioid treatments for orofacial pain.

Certain stimuli—such as a paper cut, an oven burn, or a flaming-hot chili pepper—activate pain receptors on nerve endings in the skin, prompting an influx of calcium that acts as a pain signal that neurons then pass on to the brain. Using fluorescence to track calcium surges, the NIDCR researchers were able to watch mouse neurons flicker like twinkling lights under the microscope in response to several types of stimuli, allowing them to visualize orofacial pain down to individual neurons.

“Essentially, the intensity of the imaging signals correlates with pain signaling at the molecular level,” says Kulkarni, whose lab has been studying Cdk5 for over 20 years. “This research really takes our science to the next step—we’re imaging and quantifying pain signals in real-time.”

Hu and Andrew Doyle, PhD, a staff scientist in Yamada’s lab, worked together to develop the imaging technique and used it to find out whether Cdk5, a protein known to play a role in pain at other body sites, is involved in orofacial pain signaling. The researchers applied different types of stimuli—mechanical (brushing and poking), thermal (heat), and chemical (chili extract)—to mouse cheeks and measured neuronal responses. In mice engineered to produce high levels of Cdk5, each of these stimuli—even gentle brushing—evoked more intense calcium signaling and activated a higher number of neurons, compared to normal mice. A closer look revealed a shift in the neurons’ response patterns. A larger number of neurons responded to two or more types of stimuli instead of just one. Taken together, these findings indicate that increased Cdk5 activity appears to heighten pain-sensing neurons’ sensitivity to painful and nonpainful stimuli.

“These mixed-up neurons can be a problem,” says Yamada, whose lab specializes in advanced imaging techniques. “For example, we saw neurons that interpret light touch as pain, which corresponds with a major problem we see in a type of clinical pain called allodynia.”

For patients with allodynia, even the gentle brush of a soft sweater can be painful. So the researchers next examined mice with a similar condition. They found that blocking Cdk5 activity in these animals reduced calcium-based pain signals and decreased the number of neurons that responded to both gentle brushing and chili extract, a chemical irritant. These findings suggest that targeting Cdk5 in nerves outside the brain and spinal cord could be a safer treatment avenue than existing pain therapies.

Kulkarni and Yamada suggest that potential new treatments based on their findings could relieve severe pain without affecting brain functions involved in the development of opioid use disorder, which can be a serious side effect of taking opioids. “We hope that our study may eventually become relevant to human conditions by raising the possibility of a drug that can target the peripheral sensing of pain without affecting the central nervous system,” adds Yamada.

Reference

Visualization of trigeminal ganglion sensory neuronal signaling regulated by Cdk5. Hu M, Doyle AD, Yamada KM, Kulkarni AB. Cell Reports. 2022 Mar 8;38(10):110458. doi: 10.1016/j.celrep.2022.110458.

“Facial Pain Comes to Light was originally published by the National Institute of Dental and Craniofacial Research.”

You Might Also Like

Common Herbicide Causes Genital Abnormalities in Frogs

Free mRNA for Your Baby?

Americans Injured by the COVID-19 Vaccine Have to Prove Causation to Receive Compensation

Research Shows Huge Spike in MND Risk Among Former International Players

Research Shows Huge Spike in Motor Neurone Disease Risk Among Former International Rugby Players

Epoch Times September 24, 2022
Share this Article
Facebook TwitterEmail Print
Leave a comment

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Follow US

Find US on Social Medias
Facebook Like
Twitter Follow
Youtube Subscribe
Telegram Follow

Weekly Newsletter

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form]
Popular News
Telehealth

Telehealth heavy hitter Dr. Roy Schoenberg on virtual care in 2023

Healthcare IT News Healthcare IT News December 14, 2022
Telehealth summit debrief: staffing shortages, wider acceptance but expansion barriers
CDC adds COVID-19 shots to routine vaccine schedules
Reinvesting in caregivers and charting a more sustained path, but uncertainties remain, says St. Charles Health CFO
Oregon’s Oversight Did Not Ensure That Four Coordinated-Care Organizations Complied With Selected Medicaid Requirements Related to Access to Care and Quality of Care
- Advertisement -
Ad imageAd image
Global Coronavirus Cases

Confirmed

0

Death

0

More Information:Covid-19 Statistics

©Your Health Wire. All Rights Reserved.

  • Home
  • News
  • Physicians
  • Telehealth
  • Hospitals
  • Opioids
  • Opinion
  • Acquisitions
  • Fraud
  • Legislation
  • Home Health

Removed from reading list

Undo
Welcome Back!

Sign in to your account

Lost your password?